3.2626 \(\int \frac{5-x}{\sqrt{3+2 x} (2+5 x+3 x^2)^{5/2}} \, dx\)

Optimal. Leaf size=175 \[ \frac{916 \sqrt{3} \sqrt{-3 x^2-5 x-2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right ),-\frac{2}{3}\right )}{5 \sqrt{3 x^2+5 x+2}}-\frac{2 \sqrt{2 x+3} (47 x+37)}{5 \left (3 x^2+5 x+2\right )^{3/2}}+\frac{4 \sqrt{2 x+3} (2607 x+2152)}{25 \sqrt{3 x^2+5 x+2}}-\frac{3476 \sqrt{3} \sqrt{-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{25 \sqrt{3 x^2+5 x+2}} \]

[Out]

(-2*Sqrt[3 + 2*x]*(37 + 47*x))/(5*(2 + 5*x + 3*x^2)^(3/2)) + (4*Sqrt[3 + 2*x]*(2152 + 2607*x))/(25*Sqrt[2 + 5*
x + 3*x^2]) - (3476*Sqrt[3]*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*Sqrt[1 + x]], -2/3])/(25*Sqrt[2 +
5*x + 3*x^2]) + (916*Sqrt[3]*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3]*Sqrt[1 + x]], -2/3])/(5*Sqrt[2 +
5*x + 3*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.108425, antiderivative size = 175, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {822, 843, 718, 424, 419} \[ -\frac{2 \sqrt{2 x+3} (47 x+37)}{5 \left (3 x^2+5 x+2\right )^{3/2}}+\frac{4 \sqrt{2 x+3} (2607 x+2152)}{25 \sqrt{3 x^2+5 x+2}}+\frac{916 \sqrt{3} \sqrt{-3 x^2-5 x-2} F\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{5 \sqrt{3 x^2+5 x+2}}-\frac{3476 \sqrt{3} \sqrt{-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{25 \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Int[(5 - x)/(Sqrt[3 + 2*x]*(2 + 5*x + 3*x^2)^(5/2)),x]

[Out]

(-2*Sqrt[3 + 2*x]*(37 + 47*x))/(5*(2 + 5*x + 3*x^2)^(3/2)) + (4*Sqrt[3 + 2*x]*(2152 + 2607*x))/(25*Sqrt[2 + 5*
x + 3*x^2]) - (3476*Sqrt[3]*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*Sqrt[1 + x]], -2/3])/(25*Sqrt[2 +
5*x + 3*x^2]) + (916*Sqrt[3]*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3]*Sqrt[1 + x]], -2/3])/(5*Sqrt[2 +
5*x + 3*x^2])

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{5-x}{\sqrt{3+2 x} \left (2+5 x+3 x^2\right )^{5/2}} \, dx &=-\frac{2 \sqrt{3+2 x} (37+47 x)}{5 \left (2+5 x+3 x^2\right )^{3/2}}-\frac{2}{15} \int \frac{696+423 x}{\sqrt{3+2 x} \left (2+5 x+3 x^2\right )^{3/2}} \, dx\\ &=-\frac{2 \sqrt{3+2 x} (37+47 x)}{5 \left (2+5 x+3 x^2\right )^{3/2}}+\frac{4 \sqrt{3+2 x} (2152+2607 x)}{25 \sqrt{2+5 x+3 x^2}}+\frac{4}{75} \int \frac{-6579-7821 x}{\sqrt{3+2 x} \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{2 \sqrt{3+2 x} (37+47 x)}{5 \left (2+5 x+3 x^2\right )^{3/2}}+\frac{4 \sqrt{3+2 x} (2152+2607 x)}{25 \sqrt{2+5 x+3 x^2}}-\frac{5214}{25} \int \frac{\sqrt{3+2 x}}{\sqrt{2+5 x+3 x^2}} \, dx+\frac{1374}{5} \int \frac{1}{\sqrt{3+2 x} \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{2 \sqrt{3+2 x} (37+47 x)}{5 \left (2+5 x+3 x^2\right )^{3/2}}+\frac{4 \sqrt{3+2 x} (2152+2607 x)}{25 \sqrt{2+5 x+3 x^2}}-\frac{\left (3476 \sqrt{3} \sqrt{-2-5 x-3 x^2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 x^2}{3}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{6+6 x}}{\sqrt{2}}\right )}{25 \sqrt{2+5 x+3 x^2}}+\frac{\left (916 \sqrt{3} \sqrt{-2-5 x-3 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 x^2}{3}}} \, dx,x,\frac{\sqrt{6+6 x}}{\sqrt{2}}\right )}{5 \sqrt{2+5 x+3 x^2}}\\ &=-\frac{2 \sqrt{3+2 x} (37+47 x)}{5 \left (2+5 x+3 x^2\right )^{3/2}}+\frac{4 \sqrt{3+2 x} (2152+2607 x)}{25 \sqrt{2+5 x+3 x^2}}-\frac{3476 \sqrt{3} \sqrt{-2-5 x-3 x^2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{1+x}\right )|-\frac{2}{3}\right )}{25 \sqrt{2+5 x+3 x^2}}+\frac{916 \sqrt{3} \sqrt{-2-5 x-3 x^2} F\left (\sin ^{-1}\left (\sqrt{3} \sqrt{1+x}\right )|-\frac{2}{3}\right )}{5 \sqrt{2+5 x+3 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.341815, size = 196, normalized size = 1.12 \[ \frac{\frac{728 (x+1) \sqrt{\frac{3 x+2}{2 x+3}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{5}{3}}}{\sqrt{2 x+3}}\right ),\frac{3}{5}\right )}{\sqrt{\frac{x+1}{10 x+15}}}-\frac{6952 \left (3 x^2+5 x+2\right )}{\sqrt{2 x+3}}+\frac{2 \sqrt{2 x+3} \left (15642 x^3+38982 x^2+31713 x+8423\right )}{3 x^2+5 x+2}-\frac{3476 (x+1) \sqrt{\frac{3 x+2}{2 x+3}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{5}{3}}}{\sqrt{2 x+3}}\right )|\frac{3}{5}\right )}{\sqrt{\frac{x+1}{10 x+15}}}}{25 \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(5 - x)/(Sqrt[3 + 2*x]*(2 + 5*x + 3*x^2)^(5/2)),x]

[Out]

((-6952*(2 + 5*x + 3*x^2))/Sqrt[3 + 2*x] + (2*Sqrt[3 + 2*x]*(8423 + 31713*x + 38982*x^2 + 15642*x^3))/(2 + 5*x
 + 3*x^2) - (3476*(1 + x)*Sqrt[(2 + 3*x)/(3 + 2*x)]*EllipticE[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5])/Sqrt[(1 +
 x)/(15 + 10*x)] + (728*(1 + x)*Sqrt[(2 + 3*x)/(3 + 2*x)]*EllipticF[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5])/Sqr
t[(1 + x)/(15 + 10*x)])/(25*Sqrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.026, size = 308, normalized size = 1.8 \begin{align*}{\frac{2}{125\, \left ( 2+3\,x \right ) ^{2} \left ( 1+x \right ) ^{2}} \left ( 828\,\sqrt{15}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ){x}^{2}\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+2607\,\sqrt{15}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ){x}^{2}\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+1380\,\sqrt{15}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) x\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+4345\,\sqrt{15}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) x\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+552\,\sqrt{3+2\,x}\sqrt{15}\sqrt{-2-2\,x}\sqrt{-20-30\,x}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) +1738\,\sqrt{3+2\,x}\sqrt{15}\sqrt{-2-2\,x}\sqrt{-20-30\,x}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) +156420\,{x}^{4}+624450\,{x}^{3}+901860\,{x}^{2}+559925\,x+126345 \right ) \sqrt{3\,{x}^{2}+5\,x+2}{\frac{1}{\sqrt{3+2\,x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)/(3*x^2+5*x+2)^(5/2)/(3+2*x)^(1/2),x)

[Out]

2/125*(828*15^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x^2*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1
/2)+2607*15^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x^2*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2
)+1380*15^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)+43
45*15^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)+552*(3
+2*x)^(1/2)*15^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))+1738*(3+2*x)^
(1/2)*15^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))+156420*x^4+624450*x
^3+901860*x^2+559925*x+126345)*(3*x^2+5*x+2)^(1/2)/(2+3*x)^2/(1+x)^2/(3+2*x)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x - 5}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{5}{2}} \sqrt{2 \, x + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3*x^2+5*x+2)^(5/2)/(3+2*x)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x - 5)/((3*x^2 + 5*x + 2)^(5/2)*sqrt(2*x + 3)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{3 \, x^{2} + 5 \, x + 2} \sqrt{2 \, x + 3}{\left (x - 5\right )}}{54 \, x^{7} + 351 \, x^{6} + 963 \, x^{5} + 1447 \, x^{4} + 1287 \, x^{3} + 678 \, x^{2} + 196 \, x + 24}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3*x^2+5*x+2)^(5/2)/(3+2*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(3*x^2 + 5*x + 2)*sqrt(2*x + 3)*(x - 5)/(54*x^7 + 351*x^6 + 963*x^5 + 1447*x^4 + 1287*x^3 + 678*
x^2 + 196*x + 24), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x}{9 x^{4} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 30 x^{3} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 37 x^{2} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 20 x \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 4 \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2}}\, dx - \int - \frac{5}{9 x^{4} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 30 x^{3} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 37 x^{2} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 20 x \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 4 \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3*x**2+5*x+2)**(5/2)/(3+2*x)**(1/2),x)

[Out]

-Integral(x/(9*x**4*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 30*x**3*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 37*x
**2*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 20*x*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 4*sqrt(2*x + 3)*sqrt(3*
x**2 + 5*x + 2)), x) - Integral(-5/(9*x**4*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 30*x**3*sqrt(2*x + 3)*sqrt(3
*x**2 + 5*x + 2) + 37*x**2*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 20*x*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) +
4*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x - 5}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{5}{2}} \sqrt{2 \, x + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3*x^2+5*x+2)^(5/2)/(3+2*x)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x - 5)/((3*x^2 + 5*x + 2)^(5/2)*sqrt(2*x + 3)), x)